
814 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 5, JUNE 2009

Improving the Multicommodity Flow Rates with
Network Codes for Two Sources

Elona Erez, Member, IEEE, and Meir Feder, Fellow, IEEE

Abstract—In this work we introduce a construction and anal-
ysis of network codes for two sources. The region of achievable
rates for this problem is still unknown. The scheme we suggest
is based on modifying the multicommodity flow solution and
thus improving the achievable rate region, w.r.t the uncoded
case. The similarity to the flow problem allows our method to
be implemented distributively. We show how the construction
algorithm can be combined with distributed backpressure routing
algorithms for wireless ad-hoc networks. For both the non-
distributed case and the distributed case, the computational
complexity of our algorithm for network coding is comparable
to that of the parallel multicommodity flow problem. We provide
non trivial upper and lower bounds on the performance of our
scheme, using random coding techniques.

Index Terms—Multicommodity flow, Backpressure, Dis-
tributed network coding, Multiple unicast, Ad-hoc networks

I. INTRODUCTION

MOST literature on network coding focuses on multi-
cast where bounds on achievable rates and codes that

achieve these bounds were found. The general case of multiple
sources seems to be much more complicated. A classification
complexity of network coding problems was carried out in
[1], where it was shown that some of the non-multicast cases
are NP-hard. For this category linear codes cannot achieve
in general the optimal rates. It was further shown in [2] that
vector linear codes of any finite dimension cannot achieve
optimal rates for some networks. Koetter and Médard [3]
gave an algebraic formulation of linear network codes with
multiple sources. Yeung [4, Chapter 15] gave information-
theoretic inner and outer bounds to the rate region in the
general case of acyclic networks with multiple sources. This
result is extended in [5] to zero-error network codes. While
these schemes are elegant and insightful, the computational
cost is high for practical implementation.

In multiple unicast for d users, source si transmits to sink
ti at rate Ri. When no codes are employed, the problem is
termed the multicommodity flow, which can be solved using
linear programming. In [6] it was shown that the problem can
be implemented distributively. In [7], which considers network
coding for multiple unicast, the operations are restricted to
binary XOR. The scheme is systematic but the computational
complexity is high in comparison to the multicommodity flow.
This approach was solved distributively in [8],[9]. A different
approach in the wireless setting is given in [10] and is again
limited to XOR operations, which may lead to throughput loss.

Manuscript received 31 July 2008; revised 20 February 2009.
Elona Erez is with Department of of Electrical Engineering, Yale University,

New Haven, CT, 06511, USA (e-mail: elona.erez@yale.edu).
Meir Feder is with the Department of Electrical Engineering–Systems,

Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978,
Israel (e-mail: meir@eng.tau.ac.il).

Digital Object Identifier 10.1109/JSAC.2009.090620.

In [11] the problem is formulated as finding the stable set of
the conflict hypergraph of the network. However, the size of
the conflict graph grows exponentially and finding the stable
set may be difficult.

We provide a code construction that improves the rate re-
gion of multicommodity flows, with computational complexity
comparable to that of the multicommodity flow construction.
We focus on multiple unicast with two users. We formulate
our method as a linear programming that is closely related to
the flow problem. The similarity to the flow problem allows
our method to be implemented distributively, analogously to
the backpressure algorithm in [6]. There is only one exception
for the distributivity, in the sense that the sources do require
a small amount of feedback from the sinks at the setup stage
of the code construction. Other than that, there is no global
mechanism responsible for the communication scheme. The
coding coefficients are taken from a general field and unlike
many previous schemes operations are not restricted to XOR,
giving rise to richer families of codes.

The distributed implementation is especially important for
ad-hoc wireless networks, where nodes may have knowledge
only on their outgoing links. We show how to combine our
construction with the backpressure algorithm for wireless ad-
hoc networks [12]. Unlike previous schemes, for both the
non-distributed and the distributed cases, the complexity of
our network coding construction is comparable to that of
multicommodity. For the case of random codes, we find non-
trivial upper and lower bounds on the performance of our
construction. These results partially appear in [13], [14].

II. DEFINITIONS, NOTATIONS AND PRELIMINARIES

Consider an acyclic, unit capacity directed network G =
(V, E) where parallel edges are allowed. There are two sources
s1, s2 ∈ V and two sinks t1, t2 ∈ V . Source si transmits
to sink ti at rate Ri. As in [15], when convenient we add
a dummy source s′i which is connected to source si with
Ri edges {ei

1, . . . , e
i
Ri
}. The dummy source s′i is mentioned

only when necessary for ease of description. The size of the
minimal cut between si and sink ti is hi.

Define for each source-sink pair si − ti, the subgraph Gi

of G containing only the nodes and edges that participate in
a certain flow of magnitude hi from si to the sink ti. Denote
by ΓI(v) and ΓO(v) the set of incoming and outgoing edges
of node v, respectively. Similarly, denote by ΓI(e) and ΓO(e)
the set of incoming edges of the tail of e and outgoing edges
of the head of e, respectively.

Unless otherwise specified, we assume that the topology of
the network is completely known to the code designer. In this
case of a known network, we assume that G is given by:

G = ∪i=1,2Gi (1)

0733-8716/09/$25.00 c© 2009 IEEE

EREZ and FEDER: IMPROVING THE MULTICOMMODITY FLOW RATES WITH NETWORK CODES FOR TWO SOURCES 815

For a general network, we can always find a subgraph of the
network that has the form of (1) and implement our algorithm
for that subgraph.

For linear network codes, any edge e has a global coding
vector v(e) of dimension R1 + R2 associated with it. For
algebraic block network codes, the dummy source node s′i
gets Ri input symbols denoted as X i = (X i

1, · · · , X i
Ri

) from
the field F . For an outgoing edge ei

j, 1 ≤ j ≤ Ri of s′i all the
coordinates are zero except for the coordinate

∑
k<i Rk + j,

which is equal to X i
j . For the rest of the edges v(e) is given

recursively by:

v(e) =
∑

e′∈ΓI(e)

m(e′, e)v(e′) (2)

where e′ is an incoming edge of e, and m(e′, e) is the coding
coefficient. The symbol on e is

y(e) =
∑

e′∈ΓI(v)

m(e′, e)y(e′) = v(e)T (X1, X2) (3)

where (X1, X2) is a vector of dimension R1 +R2 containing
the input symbols of s1 and s2.

III. CODE CONSTRUCTION

We start our construction with global coding vectors of
dimension h1 + h2. The first h1 coordinates are associated
with s1 and the last h2 with s2. The vector of dimension h1

containing the first h1 coordinates of v(e) is denoted by v1(e),
and analogously v2(e) is defined for the last h2 coordinates.
We find an achievable rate region which improves that of the
multicommodity flows. We start by a special case, where one
of the sources, say s2, transmits at its maximal flow rate h2

and find a possible rate for s1. We show that this rate of s1 is
better than the best multicommodity flow rate. We generalize
this special case by considering a certain point on the boundary
of the multicommodity flow rate region (R1, R2). We show
how R1 can be improved for a given R2 using network codes.

A. Code Construction for a Special Case

Assume that s2 transmits at its maximal rate R2 = h2 and
that s1 tries to transmit at a certain, as high as possible, rate.
The construction includes three stages. The first stage is the
internal coding which determines the coding coefficients of the
intermediate nodes. The second and the third stages are the
constraints setting stages, Stage A and Stage B. These stages
determine the additional required coding at the s1. Stage A
ensures that t2 would be able to reconstruct s2 and Stage B
ensures that t1 would be able to reconstruct s1. It will be
shown that with this scheme for each 2Δ bits that s1 reduces
its rate below h1, s2 would be able to increase its rate by
at least Δ bits, as long as the capacity constraints are not
violated. This tradeoff is not always possible without coding.
1) Internal Coding: This stage is similar to the polynomial

time algorithm for multicast [15]. A path p is a sequence of
consecutive edges. A flow is a set of edge disjoint paths be-
tween two nodes. The algorithm starts by finding the maximal
flows G1 of rate h1 from s1 to t1 and G2 of rate h2 from s2 to
t2. Each of the flows Gl, l = 1, 2 consists of hl edge disjoint
paths, denoted by {pl

1, · · · , pl
hl
}. There can be multiple choices

for G1 and G2, since there may be several different maximal
flows associated with each source-destination pair. For our
purposes, we choose arbitrary maximal flows Gl, l = 1, 2.
We use only edges in the subgraph G1 ∪ G2, so we assume
that our original network is G = G1 ∪ G2. The algorithm
steps through the edges in G in topological order. For edge
e a coding vector of dimension h1 + h2 is assigned. For e
that participates in either G1 or G2, but not both, we assign
m(e′, e) = 1 for e′ that preceded e in the flow. For e that
participates in both Gl, l = 1, 2, the coefficients m(e1, e),
m(e2, e) are determined, where e1 precedes e in G1 and e2

precedes e in G2.
The code coefficients are drawn from an algebraic field F .

The set Cl, l = {1, 2} contains one edge from each of the
paths {pl

1, · · · , pl
h} in the flow Gl, l = {1, 2}, the edge whose

global coding vector was defined most recently. Denote the
global coding vectors of the edges in Cl, l = {1, 2} by Vl =
{v(e) : e ∈ Cl}. For l = 1, 2, denote by V 1

l = {v1(e) :
e ∈ Cl} the corresponding set of vectors of dimension h1 and
by V 2

l = {v2(e) : e ∈ Cl} the corresponding set of vectors
of dimension h2. The invariant maintained by the algorithm
is that for t1 the set V 1

1 spans Fh1 , while for t2 the set V 2
2

spans Fh2 . Similarly to the proof in [15] for multicast, it can
be seen that for field size two or larger, we are ensured that
at least a single m(e′, e) in F maintains the invariant. At the
end of the construction the edges in Cl, l = 1, 2 are ΓI(tl).
The property of a code constructed by this scheme is that a
certain sink can decode the data intended for it, provided that
the other source is silent.

An example of a code over the binary field is given in
Figure 1, where h1 = 3, h2 = 1. In Figure 1(a) G1 is
in thick lines, while in 1(b) G2 is in thick lines. Define
the symbols a1, a2, a3 as the symbols transmitted by t1 on
its outgoing links from left to right, respectively. The sets
C1, C2 at the end of the internal coding are also specified.
At each stage of the internal coding C1 contains one edge
from each of the three paths from s1 to t1. In Figure 1(a),
C1 contains e1, e2, e3 which are the edges in the three paths
from s1 to t1, from left to right, respectively. At the end of the
internal coding V1 = {(1, 0, 0, 1)T , (1, 1, 0, 1)T , (1, 1, 1, 1)T}.
It follows that V 1

1 = {(1, 0, 0)T , (1, 1, 0)T , (1, 1, 1)T}. Like-
wise V2 = {(1, 1, 1, 1)T} and V 2

2 = {(1)}. Note that when
R2 = h2 = 1, we cannot achieve a nonzero rate R1 using
multicommodity flow.
2) Constraints Setting- Stage A: Consider C2, which at the

end of the internal coding is ΓI(t2). The sink t2 will be able to
decode at rate h2 if all interference noise from s1 is canceled.
The dimension R12 of the vector space spanned by V 1

2 is
R12 ≤ min{h1, C12, h2}, where C12 is the capacity from s1

to t2. We choose a subset of V 1
2 of size R12 that is the basis

of V 1
2 . Denoted the basis by B1

2 = {v1(e1), . . . ,v1(eR12)}
and the edges whose vectors are in B1

2 by C1
2 . In Figure 1, we

have R12 ≤ h2 = 1 and V2 = {v(e3)} = {(1, 1, 1, 1)T}. The
vector in V 1

2 is given by V 1
2 = {v1(e3)} = {(1, 1, 1)T}, and

so B1
2 = {v1(e3)} = {(1, 1, 1)T} and C1

2 = {e3}. In order
for t2 to achieve rate h2 = 1 we set the constraint a1 + a2 +
a3 = 0. In general, the interference noise can be canceled by
forcing the symbols on C1

2 to be functions of s2 only. The
interference components on the other edges of C2 will also be

816 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 5, JUNE 2009

1s

1t

2t

2s

3e

2e

1e

linesin thick (a) 1G

1s

1t

2t

2s

3e

2e

1e

linesin thick (b) 2G

1a 1a

11 ba 11 ba1b1b

121 baa 121 baa

3a

},,{ 3211 eeeC }{ 32 eC

1321 baaa

3a

1321 baaa

Fig. 1. Example Code for Internal Coding

1s

1t

2t

2s

3e

1b 2a 21 aa +

11 ba +

1b

121 baa ++

1a

2e

1e

Fig. 2. Final Code for Example Network

canceled, since they are linear combinations of those on C1
2 .

Each edge in C1
2 would add at most a single constraint on s1.

Each such constraint reduces the rate of s1 by at most a single
bit. Therefore, rate h′

1 ≥ h1−min{h2, C12, h1} is transmitted
from s1. If h1 > h2, h′

1 is strictly positive.
3) Constraints Setting - Stage B: Consider t1 and the edges

in C1, which are now ΓI(t1). The dimension R21 of the
vector space spanned by V 2

1 is R21 ≤ min{h2, C21, h1},
where C21 is the capacity from s2 to t1. We choose a
subset of V 2

1 of size R21 that is the basis of V 2
1 , denoted

by B2
1 = {v2(e1), . . . ,v2(eR21)}. Denote the nodes whose

vectors are in B2
1 as C2

1 . In Figure 1, R21 ≤ h2 = 1 and
V 2

1 = {v2(e1),v2(e2),v2(e3)} = {(1), (1), (1)}. We choose
C2
1 = {e3} and B2

1 = {v2(e3)} = {(1)}. In general, we
find additional constraints on s1, such that the symbols on
C2
1 depend on s2 only. Sink t1 can cancel the interference

components on the other edges in ΓI(t1) using the the symbols
on C2

1 , since they are linearly dependent. Each edge in C2
1

adds at most a single constraint on s1, which reduces the
rate of s1 by at most a single bit. Since the rate was already
reduced to h′

1 ≥ h1 −min{h2, C12, h1}, the final rate of t1 is
h′

1 ≥ h1 −min{h2, C12, h1}−min{h2, C21, h1} ≥ h1 − 2h2.
If h1 > 2h2, h′

1 is strictly positive.
In Figure 1, observe that since we already set the constraint

a1 + a2 + a3 = 0, t1 is already able to decode b1, which
is the interference noise at t1. The final rate at t1 is h′

1 =

2R

1R3

1

2

ditymulticommo

codingnetwork

Fig. 3. Rate Region for Example Network

h1 − min{h2, C12, h1} = 3 − 1 = 2, which is larger than the
bound h′

1 ≥ h1 − 2h2 = 1. The final code is shown in Figure
2. The rate region is shown in Figure 3 for multicommodity
flow, and for our coding scheme. For this example, our scheme
is optimal since it achieves the cut set bound, which is 3. Note
that the rate region has an angle 45o with the negative x axis.
This, however, turns out not to be the general case.

Note that in the original network there may be several
choices for the maximal flows G1 and G2. Different choices
of G1 and G2 might result in multiple code constructions and
possibly different rates can be achieved. Nevertheless, enu-
merating all the possible flows is complicated. From practical
viewpoint, we propose to choose certain flows G1 and G2 and
operate on them. An interesting problem would be to find an
efficient way to choose the optimal flows G1 and G2 for the
purpose of coding.

B. Tradeoff Property of the Code

Theorem 1: If s1 reduces its maximal rate h1 by 2Δ bits,
then there is a code such that s2 will be able to transmit at a
rate of at least Δ bits, as long as the minimal cut condition is
not violated.
Proof: The proof is by constructing the code. We have

shown in Section III-A that for the special case when s2

transmits at its maximal rate R2 = h2 then s1 can achieve rate
which is at least h1 − 2h2. For the general case, we define a
subgraph of G by G̃ = G1∪GΔ

2 where G1 is a flow of size h1

from s1 to t1 and GΔ
2 is a flow of size Δ from s2 to t2. For the

subgraph G̃ we construct a code, according to the special case
in Section III-A. The size of the maximal flow from s1 to t1
in G̃ is denoted by h̃1 and according to construction h̃1 ≥ h1.
In fact, h̃1 = h1 since G̃ is a subgraph of G, and thus the
maximal flow h̃1 in G̃ cannot be larger than the maximal flow
h1 in G. The size of the maximal flow from s2 to t2 in G̃
is denoted by h̃2 and according to construction h̃2 ≥ Δ. If
h̃2 > Δ, then s2 can ignore the symbols that are not in GΔ

2

and not use them for decoding. Thus we can always assume
that h̃2 = Δ. Therefore, the rate of s1 in G̃ achieved by the
code constructed according to Section III would be at least
h̃1 − 2h̃2 ≥ h1 − 2Δ. It follows that h1 lost at most 2Δ bits
relative to its maximal flow h1 and that the rate of s2 is at
least Δ. �

It follows that if we take the point (h1, 0) in the rate region
and draw a line of slope 1/2 (which is equivalent to a 22.5o

angle) with the negative x axis (that represents h1), it will
be within the capacity region of our scheme (as long as
R2 ≤ h2). This observation can be helpful in determining
the situations for which our scheme is most useful. If for the
multicommodity rate region the slope with the negative x of

EREZ and FEDER: IMPROVING THE MULTICOMMODITY FLOW RATES WITH NETWORK CODES FOR TWO SOURCES 817

1s

1t

2t

2s

3e

1b 2a 3a

11 ba +

121 baa ++

1a

2e

1e

4e

2b

2121 bbaa +++

21321 bbaaa ++++

Fig. 4. Example Code for Counterexample Network

the line from (h1, 0) is smaller than 1/2, then our coding
scheme is guaranteed to improve the multicommodity rate
region. This can be performed by the construction in the proof
of Theorem 1, which achieves the rate pair (h1 − 2Δ, Δ), for
Δ s.t. R1 = h1 − 2Δ ≥ 0 and R2 = Δ ≤ h2. Likewise,
for (0, h2) if we draw a line of slope 1/2 with the negative
y axis, it will be contained in the capacity region of our
scheme (as long as R2 ≤ h2). If for the multicommodity rate
region the slope with the negative y of the line from (0, h2)
is smaller than 1/2, then our coding scheme is guaranteed
to improve the multicommodity region. Given a general point
in the rate region (R1, R2) our coding scheme is guaranteed
to improve the multicommodity rate region if the points
(R1 − 2Δ, R2 + Δ) or (R1 + Δ, R2 − 2Δ) are not in the
multicommodity rate region, for some Δ > 0, if the individual
capacity constraints are not violated. In Figure 1 the slope
from the point (h1, 0) = (3, 0) with the negative x axis is
1/3, which is less than 1/2. Our coding scheme is guaranteed
to improve the multicommodity rate region. We take the point
(3, 0) and apply the construction in the proof of Theorem
1 with Δ ≤ h2 = 1 we are guaranteed to achieve the
point (3 − 2 · 1, 1) = (1, 1), which is not achievable without
coding. On the other hand, if we look at the point (0, 1) in
the multicommodity rate region, the slope with the negative y
axis is 3 which is larger than 1/2. It follows that we are not
guaranteed to improve this point with our scheme.

For the network in Figure 1 we are able to improve the
rate region beyond what Theorem 1 guarantees. In the coded
case, the slope from (h1, 0) = (3, 0) is 1. For each Δ bits
that s1 reduces its rate below h1, s2 can increase its rate by
Δ. The one-to-one tradeoff is not always possible. In Figure
4, where h1 = 3, if a one-to-one ratio is possible, then we
expect the rate pair R1 = 1, R2 = 2 to be achievable. A
possible code is given, prior to the constraints setting. For
R2 = 2, the constraints setting reduces R1 to zero. In fact,
for this network R1 = 1, R2 = 2 is not achievable by any
network code [14]. Thus for this example, the min-cut bound
is not always achievable.

C. Improving the Multicommodity Flow

Suppose we are given a rate pair (R1, R2), which is on the
boundary of the rate region of the multicommodity flow. We

show how the solution (R1, R2) can be improved. Denote the
flow of source si, i = 1, 2 at edge e as xi

e. At edge e, from
the flow conversion and the capacity constraints:∑

e′∈ΓI(e)

x1
e =

∑
e′∈ΓO(e)

x1
e,

∑
e′∈ΓI(e)

x2
e =

∑
e′∈ΓO(e)

x2
e,

x1
e + x2

e ≤ c(e) ∀e, x1
e ≥ 0, x2

e ≥ 0 (4)

where for edge e = (u, v), c(e) is the multiplicity of the unit
capacity edges between u and v. If rate (R1, R2) is achieved
by the multicommodity flow,

x1
s = x1

t = R1, x2
s = x2

t = R2 (5)

where x1
s is the flow leaving s1 and x1

t is the flow of s1

reaching t1. The solution to the multicommodity defines flow
G′

1 from s1 to t1 and flow G′
2 from s2 to t2. Flow G′

1 might
be a subgraph of a larger flow G′′

1 from s1 to t1. Given G′
1 we

add additional paths from s1 to t1 to compose G′′
1 . Denote the

additional paths in G′′
1 \G′

1 by D1. Likewise, we construct D2,
a set of paths added to G′

2, which compose flow G′′
2 . Since

the pair (R1, R2) is on the boundary of the multicommodity
region, in the network U = D1 ∪ G′

2, if s2 transmits G′
2 at

rate R2, then s1 cannot transmit without coding. Using the
scheme in Section III-A for U , s1 can transmit at a certain
rate. Thus in G, s1 transmits at a rate higher than R1 and s2

transmits at rate R2, improving the point (R1, R2).

If we are not given a multicommodity flow solution, we
can formulate the required conditions on G′

1, D1, G′
2 and D2.

Define four commodities. The two commodities xa
e and xc

e (xb
e

and xd
e) are transmitted by s1 (s2) and received by t1 (t2). The

flows xa
e and xc

e define G′
1 and D1, respectively:∑

e′∈ΓI(e)

xa
e =

∑
e′∈ΓO(e)

xa
e ,

∑
e′∈ΓI(e)

xc
e =

∑
e′∈ΓO(e)

xc
e,

xa
e + xc

e ≤ c(e) ∀e, xa
e ≥ 0, xc

e ≥ 0 (6)

Likewise the flows xb
e and xd

e define G′
2 and D2, respectively:∑

e′∈ΓI(e)

xb
e =

∑
e′∈ΓO(e)

xb
e,

∑
e′∈ΓI(e)

xd
e =

∑
e′∈ΓO(e)

xd
e ,

xb
e + xd

e ≤ c(e) ∀e, xb
e ≥ 0, xd

e ≥ 0 (7)

The flows xa
e and xb

e constitute together the multicommodity
flow, with rate pair (Ra, Rb). Therefore:

xa
e + xb

e ≤ c(e) ∀e (8)

Note that flow xa
e is allowed to overlap with flow xd

e . Likewise
for flows xb

e and xc
e.

Definition 1: Denote the set xa
e , xb

e, x
c
e, x

d
e , ∀e ∈ E that

maintain conditions (6)-(8) as quasiflow Z .

The computational complexity of finding the quasiflow Z is
similar to that of the multicommodity since the linear program-
ming has a similar number of variables and inequalities. Given
Z , the code that improves the multicommodity solution xa

e , xb
e

can be constructed as follows. At the first stage, to improve
R1, consider xa

e , xb
e, x

c
e. The data transmitted on xa

e is left
uncoded. The data on xb

e, x
c
e is coded according to Section

III-A. To improve R2, in the second stage likewise consider
xa

e , xb
e, x

d
e .

818 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 5, JUNE 2009

D. Distributed Code Construction

1) Distributed Quasiflow Construction: In our distributed
setting all nodes, except the sources, code and make routing
decisions according to the information they receive from their
neighboring nodes. There is one exception to the distributivity
since the sources require a small amount of feedback from the
sinks. Other than that, there is no global mechanism respon-
sible for the communication scheme. Generally, distributed
schemes incur some rate loss, but the rate loss becomes smaller
if a large field size is employed and larger routing delays are
allowed.

The quasiflow Z can be found by linear programming,
which is not distributed. For the multicommodity problem,
the backpressure algorithm in [6] is distributed. The algorithm
is an approximation and has lower complexity than linear
programming. We show how to modify the algorithm in [6] in
order to find the quasiflow. Once Z is found, network coding
can be constructed, as will be shown in Section III-D2. The
algorithm finds a solution with demands di for commodity
i = a, b, c, d provided that there exists feasible quasiflow with
demand (1+2ε)di per commodity i. For each source(sink), we
connect a dummy source(sink) with several unit capacity edges
to the source(sink), where the number of connecting edges is
R(1 + 2ε)di and R is the number of rounds of the algorithm,
defined below and upper bounded by (9). This quantity an
upper bound on the flow that goes through the source, for a
single operation of the algorithm. There is a regular queue
for each commodity at the head and tail of each edge. The
potential of a regular queue is defined as φi(q) = eαiq , where
αi = ε/8ldi and l is the length of the longest flow path in G.
The size of the source queue for each commodity i is bounded
by Qi , where Qi = Θ(ldiln(1/ε)

ε). The excess of commodity i
is placed in an overflow queue at each source. The potential of
the overflow queue is defined as σi(b) = bφ′

i(Qi) = bαie
αiQi .

Details on these definitions can be found in [6]. The algorithm
proceeds in rounds, where each unit-time round consists of the
following four phases:

1) For each source si add (1 + ε)di units of quasiflow to
the overflow queue of commodity i and move as much
quasiflow as possible from the overflow queue to the
source queue.

2) For each edge push quasiflow across it (from the tail
queue to the head queue) so as to minimize the sum
of potentials of the queues in it subject to constraints
(6)-(8).

3) For each commodity i empty the sink queue.
4) For each i and each node v, rebalance commodity i

within v so that the head queues of the incoming edges
and the tail queues of the outgoing edges for commodity
i are of equal size.

The algorithm does not guarantee that each unit of quasiflow
will reach its destination. However, it can be shown that the
amount of undelivered quasiflow stays bounded over time, by
upper bounding the size of the regular queues and overflow
queues. The analysis is similar to the analysis in [6], except
a quasiflow is treated instead of a flow. The full modification
to quasiflow appears in [14].

Over R rounds we inject R(1 + ε)di units of commodity i.
If we require the undelivered flow to be at most Rεdi, it can
be shown that it is sufficient to take

R = O

(
El(1 + ln(1/ε))

ε2

)
(9)

rounds. The complexity is R times the work performed at
a single round. The number of rounds R required for the
convergence of the algorithm is finite and decreases when we
allow a larger fraction of the quasiflow to remain undelivered.
2) Incorporating Network Codes: We interpret the network

as a time slotted network [16], [17].
Definition 2: Given a network G, and a positive integer R,

the time slotted network denoted by GR, is defined as follows.
It includes the nodes s1, s2 and all nodes of the type xr where
x is a non-source node in G and r ranges through integers 1
and R. The edges in the network belong to one of the three
types listed below. For any non-source nodes x and y in G:

• For r ≤ R the capacity of the edge from sl, l = 1, 2 to
xr, is that of the edge from si to x in G.

• For r < R the capacity of the edge from xr to yr+1 is
the capacity of the edge from x to y in G.

• For r < R the capacity of the edge from xr to xr+1 is
infinity.

In Z , for each of the flows xi
e, i = a, b, c, d, a symbol

sent from sl, l = 1, 2 to xr corresponds to the symbol sent
on edge (sl, x) during round r. A symbol sent from xr to
yr+1 corresponds to the symbol sent on edge (x, y) during
round r. A symbol sent from xr to xr+1 corresponds to the
accumulation of a symbol in the queue of x from round r to
round r + 1. For each flow xi

e, ∀e ∈ E the edges in GR that
participate in the flow form a subgraph with capacity Rdi.
After the algorithm finds the quasiflow Z , we construct the
network code for network GR according to Section III-C.

For the distributivity of the algorithm, we use random
coding for the internal coding stage in Section III-A1, where
each node chooses the coding coefficients from a field. The
total number of coding edges in the network is ER. The
success probability of the internal coding is at least Psucc =(
1 − 2

|F|
)ER

[18]. The block size is cER, where c is chosen
according to the desired success probability and the block size
as O(log(ER)). The block size can be larger than the capacity
of each edge. The time scale is changed, so that each edge
can carry at least a single symbol at each round. Since the
delay of the quasiflow is at least R rounds, the coding delay
is of logarithmic order.

The distributed quasiflow construction in Section III-D1
does not guarantee that all of the flow will reach the sinks,
and some packets may be lost. There are a number of ways to
set up the coding scheme, and we present a possible way. We
denote a set of R rounds as a step. In the first step quasiflow
Z is determined using the algorithm in Section III-D1. The
quasiflow in future steps will behave the same, since the
quasiflow is constant and deterministic. The symbols that have
not reached the sinks after an entire step are emptied from the
queues in the network, so that they are not mixed with symbols
in future steps. Since the quasiflow in GR is constant and
deterministic, after the first step it is possible to learn exactly

EREZ and FEDER: IMPROVING THE MULTICOMMODITY FLOW RATES WITH NETWORK CODES FOR TWO SOURCES 819

which packets will be lost for each R rounds. In the second
step, only the flows {xa

e}, {xc
e} carry symbols. Since these

flows do not overlap, no coding is necessary. The symbols
are transmitted, according to the quasiflow determined in the
first step. The sink t1 receives the symbols intended for it,
except the lost packets, and informs s1 of the missing packets
by feedback. The source s1 now knows not to encode data
on these packets in future steps. This procedure is repeated
in the third step for {xb

e}, {xd
e} and the pair s2 − t2. Next all

the nodes draw the randomized coding coefficients and store
them for future use.

In the forth step s1 transmits a unit matrix while all the
nodes perform network coding, enabling s1 to inform each
sink of the coding coefficients from s1 to the sink [19], Section
1.5.1. In the fifth step s2 transmits the unit matrix. Since the
source has to set the coding constraints, the coding coefficients
are sent from the sinks to the sources by feedback. The sources
determine by a common algorithm the constraints and set
them on the transmitted symbols. Once the constraints are
set, each sink can decode the data intended for it. Note that
if the rate requirements change, then as long as the change
can be achieved by other coding constraints, no new setup is
required. The sources need only to set again the new coding
constraints and make them known to the sinks. In contrast, in
regular multicommodity each change in the data rates requires
in general a totally new setup.

E. Distributed Construction of Quasiflow for Ad-hoc Wireless
Networks

In [12] a backpressure algorithm was considered for ad-hoc
wireless network. We modify our network model according to
[12], while we construct a quasiflow instead of a flow. Packet
arrivals are i.i.d. over timeslots and A

(i)
v (n) is the number of

packets of commodity i that arrive to v during slot n. At most
one packet can be transmitted from a node during a timeslot,
where μv(n) ∈ {0, 1} is the number of packets transmitted by
v during slot n. Transmission opportunities are determined by
a (deterministic) time division multiple access structure and
ξv(n) is 1 if node v is allowed to transmit during slot n and 0
otherwise. If the node transmits a packet at a certain time slot
it can choose a commodity a, b, c, d or a pair of commodities
(a, d) or (b, c) (since these pairs of commodities are allowed to
occupy the same capacity unit in the quasiflow). Let U

(i)
v (n)

be the number of packets of commodity i at node v at the
beginning of time slot n. Define U

(i)
t (n) = 0 for any n if t

is the destination of commodity i. Each packet transmission
consumes power Ptran, and is successfully received by node
u with probabilities qvu(n). Let Kv(n) represent the set of
all potential receivers for node v during slot n. The success
probability of packet transmission can be correlated over
various links, and the probability qv,Ωv (n), where Ωv is a
subset of nodes within Kv(n), represents the probability that
the set of nodes that successfully receive the packet is exactly
Ωv. The control mechanism includes ACK/NACK messages
from each receiving node through a feedback channel to v
[12]. For a power vector p = {p1, · · · , p|V |} define the cost
function h(p) =

∑|V |
i=1 h(pi) where h(pi) is a nonnegative,

continuous function and h(0) = 0. The power consumed at

time slot n is p(n) = Ptran · (μ1(n), · · · , μ|V |(n)). The non-
negative parameter V determines the degree to which power
cost is emphasized. Every timslot n each node v observes the
queue backlogs in each of its potential receiver nodes and the
current channel probabilities associated with its receivers. If
ξv(n) = 1 then v performs the following:

1) Compute for commodities i = a, b, c, d and receivers
u ∈ Kv(n) the differential backlog weights:

W (i)
vu (n) = max[U (i)

v (n) − U (i)
u n), 0] (10)

For the pairs of commodities (i, j) = (a, d) and (i, j) =
(c, d) define the joint weights:

W (i,j)
vu (n) = W (i)

vu (n) + W (j)
vu (n) (11)

2) The receivers u ∈ Kv(n) are priority ranked according
to the W

(i,j)
vu (n) weights. Define u(v, i, j, n, b) as the

node u ∈ Kv(n) with the bth largest weight W
(i,j)
vu (n)

for commodity pair (i, j):

W
(i)
vu(v,i,j,n,1)(n) ≥ W

(i)
vu(v,i,j,n,2)(n) ≥ · · · (12)

3) Define φ
(i,j)
v,u (n) as the probability that a packet trans-

mission from node v is correctly received by node u,
but is not received by any other nodes u ∈ Kv(n) that
are ranked with higher priority than node u according to
the commodity pair (i, j) rank ordering of the previous
step.

4) Define the optimal commodity pair (i, j)∗v(n) as the
commodity pair (i, j) that maximizes:

|Kv(n)|∑
b=1

W (i,j)
vu (n)φ(i,j)

v,u (n) (13)

Define W ∗
vu(n) =

∑|Kv(n)|
b=1 W

(i,j)∗v(n)
vu (n)φ(i,j)∗v (n)

v,u (n)
as the resulting maximum value.
5) If W ∗

vu(n) − V hv(Ptran) > 0, choose pair (i, j). If
W

(i)
vu (n) > 0 and W

(j)
vu (n) > 0 then in the quasiflow,

both commodities i and j are transmitted by node v at
slot n. If W

(i)
vu (n) = 0 then the node transmits only

commodity j. Likewise, if W
(j)
vu (n) = 0 then the node

transmits only commodity i. If W ∗
vu(n)−V hv(Ptran) ≤

0 node v remains idle for slot n
5) After receiving ACK/NACK feedback from the re-

cipients nodes, v shifts responsibility of the packet
to the successful receiver u with the largest positive
W

(i,j)∗v(n)

(v,u) (n). If no successful receiver has positive
differential backlog, node v keeps the responsibility for
the packet.

In [12] optimality and stability properties of the routing
algorithm are proved. Similar properties hold also for the
quasiflow construction under our model and the proofs can
be modified in a straightforward way. Once the quasiflow
is constructed, network codes can be incorporated similarly
to Section III-D2, provided that the network changes slowly,
so that we can assume that if a transmission was successful
at some slot and at some recipient node, then future trans-
missions to that receiver node will continue to be successful
during several rounds. The setup scheme in Section III-D2

820 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 5, JUNE 2009

could be implemented. After the network changes and other
recipient nodes are successful, a new setup stage will be
required.

IV. RANDOM CODING ANALYSIS

We find non-trivial lower and upper bounds on the rates that
our scheme achieves. We focus on the special case in Section
III-A, in which t2 receives its maximal rate R2 = h2. As in
III-A, the construction includes three stages: internal coding,
Stage A and Stage B. We assume that in the internal coding
the coefficients are drawn randomly from a field F .

A. Lower Bound

Definition 3: Rank rij is the average rate that tj receives
from si after the internal coding (prior to the constraints
setting) when the other source is silent, where the average
is over the random codes. In other words, rij is the average
rank of the set V i

j = {vi(e), e ∈ ΓI(tj)} (defined in Section
III-A). In short, we say that “sink tj receives rank rij from
source si”.

We find the rank that tj receives from si, i = 1, 2. The
capacity hi, i = 1, 2 from si to ti can be achieved using a
flow, which is denoted by fii and contains Eii edges. The
maximal flow of size Cij , i = 1, 2, j = 1, 2, i �= j from si to
tj is denoted by fij and contains Eij edges. Consider random
coding with a single source and a single sink. The maximal
flow of size h from s to t is denoted by fst and contains Est

edges. At each edge the failure probability is at most 1
|F| [15].

The rank of the set of the global coding vectors of ΓI(t) is
reduced by at most 1 per code failure at an edge. On average
sink t loses rank 1

|F| per edge in fst. The total average rank

loss at sink t is at most Est

|F| . Sink t will be able on the average

to reconstruct at least h−Est

|F| symbols. We will choose F such
that |F| > Est. Since rij is defined when one of the sources
is silent, we can similarly find:

r11 = h1 − E11

|F| , r12 = C12 − E12

|F| ,

r21 = C21 − E21

|F| , r22 = h2 − E22

|F| (14)

where εij = Eij

|F| . In Section III-A we assumed t2 receives
the maximal rate h2. When the code is random, the rate
that t2 receives from s2 is on average r22 = h2 − ε22. The
sink t2 receives rank r12 = C12 − ε12 from source s1. The
interference noise at t2 can be canceled in Stage A by at most
r12 constraints on s1, and so the rate of s1 is reduced by at
most r12. We define the NOR region, in order to find how
many additional constraints are set on s1 in Stage B. For the
definition we assume that the field size is infinite. We describe
this region and summarize the algorithm that computes it. In
Section IV-A1, we give the full analysis. We also show how
a finite field size is treated.
The noise only region (NOR)- the set of edges in ΓI(t1)

that are forced to carry after stage A symbols that depend only
on the source s2.

• Go over the h1 edges in ΓI(t1), one after another.

1e 2e 3e 4e

5e

6e 7e

2t

1t

2s

1s

1q

2q

3q

1p
5p

4p3p2p

Fig. 5. Example 1

• Consider the network G′ = (V
⋃

T, E
⋃{et1}

⋃{et2}),
where {eti}, i = 1, 2 is a set of h1 +h2 edges from sink
ti to supersink T .

• For edge e ∈ ΓI(t1) capacity Ce is the capacity from
s1 to T in G′ when all of the edges in ΓI(t1), except e
itself, are disconnected.

• Edge e belongs to the NOR if and only if Ce = C12.
• Find a maximal flow fNOR from s2 to t1 when all edges

in ΓI(t1)\NOR are disconnected.
• Define the edges in NOR

⋂
fNOR as the Effective Noise

Only Region (ENOR).

Example 1: In Figure 5 edges with in-degree one forward
the symbols they receive. The sink t1 receives p1, p2, p3, p4, p5

and t2 receives q1, q2, q3. The coding edges are enumerated
e1, . . . , e7. The code after the internal coding in Table I is
binary. To avoid interference at t2, the symbols q1, q2, q3 are
forced to be functions of the s2 only. The constraints set on
s1 are b1 + b2 + b3 + b4 = 0 and b1 + b5 = 0. The resulting
code is shown in Table II, where p4, p5 depend only on s2,
which suggests that the edges that carry them might be in the
NOR. To find the NOR, we disconnect in Figure 6 all edges in
ΓI(t1) except the edge that carries p5. In G′ defined above, the
capacity from s1 to T is 2, the same as the capacity from s1 to
t2 in G. Thus the edge that carries p5 is in the NOR. Similarly,
the edge that carries p4 is in the NOR. The procedure for the
edge that carries p3 is shown in Figure 7. The capacity from
s1 to T in G′ is 3 which is greater than the capacity from s1

to t2 in G. Thus the edge that carries p3 is not in the NOR.
Similarly, the edges that carry p1 and p2 are not in the NOR.
If follows that the NOR consists of the edges that carry p4

and p5. In order to find the ENOR we disconnect in Figure 8
all edges in ΓI(t1) except the edges that carry p4 and p5. In
Figure 8, the capacity from s2 to the NOR is 2 and therefore
both edges that carry p4 and p5 are in the ENOR.
1) The Noise Only Region (NOR): According to Section

III-A, G = G1 ∪ G2. The set ΓI(t1) is restricted to the h1

incoming edges of t1 in G1. That is, t1 will not use for
decoding the symbols it might receive from edges that are

EREZ and FEDER: IMPROVING THE MULTICOMMODITY FLOW RATES WITH NETWORK CODES FOR TWO SOURCES 821

1e 2e 3e 4e

5e

6e 7e

2t

1t

2s

1s

1q

2q

3q

5p

1b
2b 3b 4b 5b

1c
2c

3c

Fig. 6. Example 1 - Finding the NOR

1e 2e 3e 4e

5e

6e 7e

2t

1t

2s

1s

1q

2q

3q

3p

1b
2b 3b 4b 5b

1c
2c

3c

Fig. 7. Example 1 - Finding the NOR

not in G1. Since this section deals with achievable rates this
assumption is valid. Similarly, the set ΓI(t1) is restricted to
the h2 incoming edges of t2 in G2.

Since for an infinite field size t2 is required to receive its
maximal rate, the h2 symbols at ΓI(t2) are required to be
after Stage A functions of s2 only. For an infinite field size,
the Noise Only Region (NOR) is the set of edges in ΓI(t1) that
are forced to carry after stage A symbols that depend only on
s2. For a finite field size, the symbols at the edges in the NOR
might depend also on s1. In order to find the NOR, we go over
the h1 edges in ΓI(t1), one after another. Define the capacity
from s1 to t1 + t2 as the capacity from s1 to a supersink T in
G′ defined above. For the definition of G′, we connect both
t1 and t2 to T with h1 + h2 edges, since h1 + h2 is an upper
bound on any rate that can be transmitted in the network. For
e in ΓI(t1), we find the capacity Ce from s1 to t1 + t2 when
all the edges in ΓI(t1), except e, are disconnected. For the
network in Figure 5 we compute Cp4 (where in our notation
p4 denotes both the edge and the symbol on the edge) by
finding the capacity from s1 to sink T in Figure 9, which is 2.
The sinks t1 and t2 are each connected to T with h1 +h2 = 8
edges.
Theorem 2: Edge e belongs to the NOR if and only if Ce =

C12.
Proof: Assume s2 is silent. For an infinite field size F ,

prior to stage A, t2 receives rank C12 from s1. If Ce = C12

the symbol on e is linearly dependent on the symbols received

1e 2e 3e 4e

5e

6e 7e

2t

1t

2s

1s

1q

2q

3q

4p

1b
2b 3b 4b 5b

1c
2c

3c

5p

Fig. 8. Example 1 - Finding the ENOR

TABLE I
AN EXAMPLE CODE AFTER THE INTERNAL CODING

edge symbol code
e1 b1 + c1

e2 p2 b1 + b2 + c1

e3 p3 b1 + b2 + b3 + c1

e4 q1 b1 + b2 + b3 + b4 + c1

e5 p4 = q2 b1 + b2 + b3 + b4 + c1 + c2

e6 p1 b1 + c1 + c3

e7 p5 = q3 b1 + b5 + c1 + c3

by t2. Stage A forces the symbols on ΓI(t2) to be canceled. It
follows that the symbol at e will also be canceled. If s2 is not
silent, due to the linearity of the code, the symbol on e will
depend only on s2. According to definition e belongs to the
NOR. Similarly, if Ce = C12 + 1, then e is not in the NOR.

In Figure 9 since Cp4 = C12 = 2 edge e is in the NOR. In
the average case, because of the finite field, the rank received
by t2 from s1 is C12 − ε12. Consider the capacity from s1 to
t1 + t2, when all of the edges in ΓI(t1) that are not in the
NOR (defined for an infinite field size) are disconnected. That
capacity is C12, otherwise the condition on the NOR will be
violated. Therefore, when all of the edges in ΓI(t1) that are
not in the NOR are disconnected, after setting the C12 − ε12
constraints on s1 in Stage A, t1 receives in the average case
rank at most ε12 from s1. Setting additional ε12 constraints on
s1 in Stage B ensures that the symbols on the edges in NOR
do not depend on s1.

Denote the number of edges in the NOR as Cnor. The
algorithm finds a maximal flow fNOR from s2 to t1 when
all of the edges in ΓI(t1) that are not in the NOR are
disconnected. The size of fNOR is denoted by Cenor . The set
of edges in the NOR that also participate in fNOR is defined
as the Effective Noise Only Region (ENOR). For an infinite
field size, the symbols that are in the NOR but not in the
ENOR are disregarded since they are linearly dependent on
the ENOR. The symbols in the ENOR will be used in order
to cancel the interference noise on the other edges in ΓI(t1).

For a finite field size, when all the edges in ΓI(t1) that
are not in the NOR are disconnected, t1 receives from s2 on
average rank Cenor − εenor, where εenor = Eenor

|F| and Eenor

is the number of edges in fNOR. The sink t1 will be able
to use the Cenor − εenor independent symbols received at the

822 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 5, JUNE 2009

TABLE II
AN EXAMPLE CODE AFTER CONSTRAINTS SETTING

edge symbol code
e1 b1 + c1

e2 p2 b1 + b2 + c1

e3 p3 b1 + b2 + b3 + c1

e4 q1 c1

e5 p4 = q2 c1 + c2

e6 p1 b1 + c1 + c3

e7 p5 = q3 c1 + c3

ENOR from s2 in order to cancel the interference at the other
edges in Γ(t1). The edges that are in the NOR but are not in
the ENOR might contribute at most εenor additional linearly
independent symbols of source s2. Otherwise, the capacity
condition on Cenor will be violated. For a large field F this
contribution is negligible and therefore the sink t1 disregards
these edges for decoding.

As for computational complexity, finding the NOR requires
h1 capacity computations and the ENOR requires a single
capacity computation. Therefore, h1+1 capacity computations
are required.
2) A Lower Bound on the Achievable Rate:
Theorem 3: When s2 transmits rate R2 = h2, a lower

bound on average achievable rate R1 of s1:

R1 ≥ h1 −C12 −C21 +Cenor − ε11 − εenor + ε12 + ε21 (15)

Proof: Before the constraints setting, the average rank
r12 that t2 receives from s1 is given by C12 − ε12. Therefore,
in the average case after setting at most C12 − ε12 constraints
on s1, sink t2 will be able to decode s2 at rate h2 − ε22.
Sink t1 receives from s2 before the constraint settings rank
C21 − ε21. After setting the C12 − ε12 constraints, sink t1
can decode Cenor − εenor symbols of source s2, according
to the construction of the ENOR. Therefore, setting at most
(C21 − ε21) − (Cenor − εenor) = C21 − Cenor − ε21 + εenor

additional constraints on s1 would enable t1 to cancel the
interference. Thus the total number of constraints set on s1

is C12 + C21 − Cenor − ε12 − ε21 + εenor, which is the rate
loss of s1 relative to the achievable rate h1 − ε11 for random
coding when s2 is silent.

B. An Upper Bound on the Achievable Rate

We derive an upper bound on the achievable rate region of
our scheme in the average case.
Theorem 4: With our code construction, sink t1 can decode

s1 at rate at most:

R1 ≤ h1 − C21 + ε21 (16)

Proof: We can model the total system seen by t1, of
the network combined with the random coding, as the vector
channel of dimension h, y = Ax+z. The vector y is the vector
received by t1, A is the transfer matrix between s1 to t1, x is
the vector of s1, and z is the interference noise. In the average
case t1 receives from s2 after the internal coding, before the
constraints setting, rank C21−ε21. Therefore, the entropy of z
is on average H(Z) = C21 − ε21. The entropy of y is at most
H(Y) ≤ h1, because of the capacity constraints. Thus, the
mutual information between the s1 and the received symbols

1e 2e 3e 4e

5e

6e 7e

2t

1t

2s

1s

1q

2q

3q

1b
2b 3b 4b 5b

1c
2c

3c

T

4p

Fig. 9. Definition of Cp4

at t1 is I(X ; Y) = H(Y) − H(Y |X) = H(Y) − H(Z) ≤
h1 − C21 + ε21.

The gap between the lower bound in (15) and the upper
bound in (16) is C12 − Cenor + ε′, where ε′ can be made
arbitrarily small by enlarging the field size. The gap is
nonnegative since according to construction C12 ≥ Cenor

(in fact, C12 ≥ Cnor ≥ Cenor). From definition, it follows
that C21 ≥ Cenor. For an infinite field size, the gap vanishes
when C12 = Cenor, and it follows that C21 ≥ C12. After
Stage A, t1 can reconstruct the interference from s2 at rate
Cenor = C12. The number of constraints setting in Stage
A is at most C12. In Stage B, additional C21 − C12 will
suffice in order for t1 to reconstruct all the interference noise.
Therefore the rate of s1 after Stage A and Stage B is equal
to R1 = h1 − C12 − (C21 − C12) = h1 − C21, which is the
upper bound in (16) for an infinite field.

Since t2 receives from s2 at most rate R2 = h2, the upper
bound on the sum rate is:

R1 + R2 ≤ h1 + h2 − C21 + ε21 (17)

for ε21 ≥ 0, which can be made arbitrarily small by enlarging
the field size. Denote the upper bound for infinite field by Cub,
where Cub = h1 + h2 −C21. We show that the bound (17) is
not trivial.
Theorem 5: The capacity of the minimal cut separating the

sources s1, s2 from the sinks t1, t2, is denoted as Cmc. The rate
Cub is not larger than Cmc and in general is strictly smaller
than Cmc.

Proof: Suppose that the opposite is true. That is, for some
δ > C21:

Cmc = h1 + h2 − δ (18)

Consider a certain minimal cut that separates the sources
(s1, s2) from the sinks (t1, t2). In Figure 10 thicker ar-
rows depict the minimal cut that contains seven edges:
e2, e3, e4, e5, e6, e7, e8. For each of the h1 paths in any max-
imal flow from s1 to t1 there is at least a single edge in the
minimal cut and similarly for the h2 paths from s2 to t2. For
each of the h2 paths from s2 to t2 we choose the first edge
that is in the minimal cut, to form the set E22. Thicker arrows
in Figure 11 depict the edges in E22: e2, e5, e6, e8. The set
E22 contains edges in Δ different paths in the flow from s1

EREZ and FEDER: IMPROVING THE MULTICOMMODITY FLOW RATES WITH NETWORK CODES FOR TWO SOURCES 823

Fig. 10. An Upper Bound on the Achievable Rate (a)

1e 2e 3e 4e

5e

6e 7e

2t

1t

2s

1s

8e

Fig. 11. An Upper Bound on the Achievable Rate (b)

to t1, where Δ ≥ δ. This is because for each of the other
h1 − Δ paths from s1 to t1 there is at least a single edge in
the minimal cut. So together with the h2 edges in E22, the
number of edges in the minimal cut is at least h1+h2−Δ. So
if Δ < δ then (18) is violated, since we have found a minimal
cut which is smaller than Cmc. Consider the Δ paths from s1

to t1 that contain edges in E22. Denote them as p1, · · · , pΔ. If
a certain path pi has several edges in E22, we choose the last
one in the path pi and denote it as edge Ei. The path from
s2 to Ei (not including Ei) is denoted as li. The part of the
path pi, which is from Ei to t1 (not including Ei), is denoted
as qi. See Figure 12, where Δ = 3.

Suppose that a certain path qi intersects a certain path
lj , j �= i. Denote the intersection edge as ei,j . According to

2t

1t

2s

1s

1E

3E

2E

1l

2l

3l1q

2q

3q

Fig. 12. An Upper Bound on the Achievable Rate (c)

construction, path qi does not contain an edge in E22, since
Ei was chosen such that it is the last edge in pi which is in
the set E22. Since we have initially chosen the first edge in
the minimal cut for each path from s2 to t2 to be in the set
E22, it follows that lj does not contain an edge in the minimal
cut. Therefore, if qi does not have an edge in the minimal cut,
there is a path from s2 to ei,j (path lj) and from ei,j to t1
(path qi) which does not contain any edge in the minimal cut.
This contradicts the fact that the minimal cut we have initially
chosen is indeed a cut. It follows that qi has an edge that is
in the minimal cut, but according to the construction not in
E22.

Consider all the paths {qi} that do not intersect any path
lj , j �= i. Suppose that there are such Λ paths out of Δ possible
paths. Then it follows that there is a flow of size Λ from s2 to
t1, where the kth path in the flow contains path lk followed
by edge Ek, followed by path qk. It is required that the size
of this flow will be smaller than the capacity, that is Λ ≤ C21.
As follows from the argument above, each of the remaining
Δ − Λ paths {qi} contains an edge that is in the minimal
cut, but not in E22. In addition to these Δ − Λ edges in the
minimal cut (that are not in E22) there are h2 edges in the
minimal cut (in E22). In the remaining h1 − Δ paths from
s1 to t1 there is at least a single edge in the minimal cut for
each path. It follows that the size of the minimal cut is at least
h2 + Δ − Λ + h1 − Δ = h1 + h2 − Λ. Since Λ ≤ C21 < δ,
this contradicts (18).

We have shown so far that Cub is not larger than Cmc. For
the network in Figure 10 the minimal cut is of size Cmc = 7.
Since h1 = 5,h2 = 4 and C21 = 3 it follows that Cub = 6.
Therefore, the bound Cub is strictly smaller than Cmc for some
networks.

Note that the proof of Theorem 4 applies to any network
code with random coding coefficients, not just to our code
construction. Also note that Theorem 5 applies to any network,
not necessarily of structure (1). To see this, denote the original
network as G. Construct for G the subgraph G′, which consists

824 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 5, JUNE 2009

of the union of flows, as given by the RHS of (1). Since
G′ is of structure (1), Theorem 5 applies to G′, where the
values h′

1,h′
2, C′

21, C′
ub, C′

mc are defined for G′. Returning
to the original network G with values h1,h2, C21, Cub,Cmc,
according to construction h1 = h′

1,h2 = h′
2. Since G′ is a

subgraph of G, it follows that C′
21 ≤ C21 and C′

mc ≤ Cmc.
According to Theorem 5, we have C′

ub ≤ C′
mc, where C′

ub =
h′

1 + h′
2 − C′

21. For the original network, we have Cub =
h1 + h2 − C21 = h′

1 + h′
2 − C21 ≤ h′

1 + h′
2 − C′

21 ≤ C′
mc ≤

Cmc, where the second inequality follows from Theorem 5. It
follows that Cub ≤ Cmc and Theorem 5 applies to G as well.
For G, a sufficient condition for the upper bound Cub to be
strictly smaller than Cmc is C′

21 < C21 or C′
mc < Cmc.

V. SUMMARY AND FUTURE RESEARCH

The question of constructing efficient network codes for
multiple sources and finding the capacity regions is still largely
open. This is one of the most significant and challenging
areas of network coding. Our paper focused on interference
networks, the case of two sources and two sinks, where each
source is required to be reconstructed at a single sink. For
this problem, the computational complexity of most previous
schemes is high in comparison to routing without coding,
which is the multicommodity flow. We found a network code
which improves the rate region of multicommodity flows. The
code construction has non-distributed and distributed versions.
We have shown how the distributed algorithm can be imple-
mented for ad-hoc wireless networks. For both the distributed
and the non-distributed cases, the computational complexity
of our algorithm is similar to that of multicommodity. We
analyzed the performance of these codes, using techniques of
random coding. We found non-trivial lower and upper bounds
on the rates of our scheme, where the upper bound is generally
below the min-cut bound. It would be interesting to generalize
our results to a general number of users. Another challenging
problem is to find a scheme to other network models, for
example fast time-variant networks. There are practical issues
to consider, such as synchronization.

REFERENCES

[1] A. Rasala-Lehman and E. Lehman. Complexity classification of network
information flow problems. Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 142–150, New Orleans,
Louisiana, January 2004.

[2] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding
in network information flow. IEEE Tran. Inform. Theory, 51(8):2745–
2759, August 2005.

[3] R. Koetter and M. Médard. An algebraic approach to network coding,.
IEEE/ACM Transactions on Networking, 11(5):782–795, October 2003.

[4] R. W. Yeung. A First Course in Information Theory. Kluwer Aca-
demic/Plenum Publishers, March 2002.

[5] L. Song, R.W. Yeung, and N. Cai. Zero-error network coding for acyclic
networks. IEEE Tran. Inform. Theory, 49(12):3129 – 3139, December
2003.

[6] B. Awerbuch and T. Leighton. Improved approximation algorithms
for the multicommodity flow problem and local competitive routing in
dynamic networks. Proceedings of the 26th ACM Symposium on Theory
of Computing, pages 487–496, May 1994.

[7] D. Traskov, N. Ratnakar, D. S. Lun, R. Koetter, and M. Médard. Network
coding for multiple unicasts: An approach based on linear optimization.
IEEE International Symposium on Information Theory, pages 1758–
1762, Seattle, WA, July 2006.

[8] T. C. Ho, Y-H Chang, and K. J. Han. On constructive network coding
for multiple unicasts. 44th Allerton Conference on Communication,
Control, and Comupting, Monticello, IL, September 2006.

[9] A. Eryilmaz and D.S. Lun. Control for inter-session network coding.
Technical report, Proceedings of the Workshop on Network Coding,
Theory and Applications (NetCod), January 2007.

[10] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft.
Xors in the air: practical wireless network coding. SIGCOMM Comput.
Commun. Rev., 36(4):243–254, 2006.

[11] J. K. Sundararajan, M. Médard, R. Koetter, and E. Erez. A systematic
approach to network coding problems using conflict graphs. UCSD
Information Theory and Applications Inaugural Workshop, San Diego,
CA, February 2006.

[12] M. J. Neely. Optimal backpressure routing for wireless networks
with multi-receiver diversity. Conference on Information Sciences and
Systems (CISS), March 2006.

[13] E. Erez and M. Feder. Code construction for two source interference
networks. Third Workshop on Network Coding, Theory, and Applica-
tions, San Diego, CA, January 2007.

[14] E. Erez. Topics in Network Coding. PhD thesis, Tel Aviv University,
2007.

[15] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen. Polynomial time algorithms for multicast network code
construction. IEEE Tran. Inform. Theory, 51(6):1973– 1982, June 2005.

[16] R. Ahlswede, N. Cai, S.-Y. R. Li, and R.W. Yeung. Network information
flow. IEEE Transactions on Informmation Theory, 46(4):1204–1216,
July 2000.

[17] S-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE
Tran. Inform. Theory, 49(2):371–381, Febuary 2003.

[18] T. Ho, M. Médard, J. Shi, M. Effros, and D. Karger. On randomized
network coding. 41st Allerton Conference on Communication, Control,
and Comupting, Monticello, IL, October 2003.

[19] E. Erez and M. Feder. On codes for network multicast. 41st Allerton
Conference on Communication, Control and Computing, Monticello, IL,
October 2003.

Elona Erez Elona Erez received the B.Sc. (summa
cum laude), the M.Sc. (summa cum laude) and
the Ph.D. degrees from Tel Aviv University, all
in Electrical Engineering in 1999, 2002 and 2007,
respectively. She is currently a postdoctoral associate
at Yale University, at the Department of Electrical
Engineering. During 2007-2008 she was a postdoc-
toral scholar at California Institute of Technology
(Caltech), at the Department of Electrical Engineer-
ing. She received Weinstein Prize for an outstanding
student in signal processing in 2003 and 2005 and

Weinstein Prize for an outstanding publication in signal processing in 2002
and 2003. She received Colton Prize for an outstanding student in 2003-2006.
During the summer of 2005 she was a visiting researcher at the Laboratory
for Information and Decision Systems (LIDS), Massachusetts Institute of
Technology (MIT). Her research interests are in the fields of information
theory and data networks, with special interest in network coding.

Meir Feder Meir Feder received the B.Sc and
M.Sc degrees from Tel-Aviv University, Israel and
the Sc.D degree from the Massachusetts Institute
of Technology (MIT) Cambridge, and the Woods
Hole Oceanographic Institution, Woods Hole, MA,
all in electrical engineering in 1980, 1984 and 1987,
respectively.

After being a research associate and lecturer in
MIT he joined in 1989 the Department of Electrical
Engineering - Systems, Tel-Aviv University, where
he is now a Professor. He had visiting appointments

at the Woods Hole Oceanographic Institution, Scripps Institute, Bell labo-
ratories and in 1995/1996 he has been a visiting professor at MIT. He is
also extensively involved in the high-tech industry and co-founded several
companies including Peach Networks, a developer of a unique server-based
interactive TV solution which was acquired on March 2000 by Microsoft,
and Amimon a leading provider of ASICs for wireless high-definition A/V
connectivity at the home.

Prof. Feder is a co-recipient of the 1993 IEEE Information Theory Best
Paper Award. He also received the 1978 ”creative thinking” award of the
Israeli Defense Forces, the 1994 Tel-Aviv University prize for Excellent Young
Scientists, the 1995 Research Prize of the Israeli Electronic Industry, and
the research prize in applied electronics of the Ex-Serviceman Association,
London, awarded by Ben-Gurion University. Between June 1993-June 1996
he served as an Associate Editor for Source Coding of the IEEE Transactions
on Information Theory.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

